Patching Array

Problem

Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n] inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.

Example 1:
nums = [1, 3], n = 6
Return 1.

Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.

Example 2:
nums = [1, 5, 10], n = 20
Return 2.
The two patches can be [2, 4].

Example 3:
nums = [1, 2, 2], n = 5
Return 0.

Solution

思路如下:设absent为当前缺失的最小的数,ind为nums的索引,count计数需要添加的数

  • 如果存在一个nums[ind]小于absent,那么absent=nums[ind]+absent。这是因为[1,absent)都可以获得,现在又多了一个nums[ind],所以当前可以得到的范围是[1,absent+nums[ind]),即absent=nums[ind]+absent
  • 否则,我们需要引入absent,因为不引入它就没有办法继续,引入absent后,因为[1,absent-1]也是可以得到的,所以当前可以得到的集合是[1,absent+absent-1],所以新的absent=2*absent
  • 还需要注意的是数的表示范围,由于有一个例子n=2147483647,已经超出了int的表示范围,所以absent必须是long型的
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Solution {
public int minPatches(int[] nums, int n) {
long count = 0, absent = 1, ind = 0;
while (absent <= n) {
if (ind < nums.length && nums[(int) ind] <= absent) {
absent += nums[(int) ind++];
} else {
++count;
absent += absent;
}
}
return (int) count;
}
}
分享到